Biagetti, R. V. & Haendler, H. M. (1966). Inorg. Chem. 5, 383-386.

- Cameron, A. F., Taylor, D. W. & Nuttall, R. H. (1971). Chem. Commun. pp. 129–130.
- Cameron, A. F., Taylor, D. W. & Nuttall, R. H. (1972). J. Chem. Soc. Dalton Trans. pp. 422-426.
- Cherin, P., Hamilton, W. C. & Post, B. (1967). Acta Cryst. 23, 455-460.
- Choca, M., Ferraro, J. R. & Nakamoto, K. (1972). J. Chem. Soc. Dalton Trans. pp. 2297–2301.
- Cotton, F. A. & Hanson, B. E. (1976). Isr. J. Chem. 15, 165-173.
- Frank, C. W. & Rogers, L. B. (1966). Inorg. Chem. 5, 615-622.
- Huheey, J. E. (1978). Inorganic Chemistry: Principles of Structures and Reactivity, 2nd ed. New York: Harper and Row.
- Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ouellette, T. J. & Haendler, H. M. (1969). Inorg. Chem. 8, 1777-1779.
- Procter, I. M. & Stephens, F. S. (1969). J. Chem. Soc. A, pp. 1248-1255.
- Rosenthal, M. R. & Drago, R. S. (1965). *Inorg. Chem.* 4, 840–844.
 Santoro, A., Mighell, A. D. & Reimann, C. W. (1970). *Acta Cryst.* B26, 979–984.

Scavnicar, S. & Matkovic, B. (1969). Acta Cryst. B25, 2046-2055.

- Thompson, L. K., Lee, F. L. & Gabe, E. J. (1988). Inorg. Chem. 27, 39-46.
- Wallwork, S. C. & Addison, W. E. (1965). J. Chem. Soc. pp. 2925-2933.

Acta Cryst. (1993). C49, 2070-2072

Structure of a Binuclear Copper(II) Complex with both μ -Alkoxo and μ -Formato Bridges, [Cu₂(C₁₇H₁₅N₂O₃)(HCOO)]

TAKASHI KAWATA AND SHIGERU OHBA*

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan

Yuzo Nishida

Department of Chemistry, Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990, Japan

Tadashi Tokii

Department of Chemistry, Faculty of Science and Engineering, Saga University, Saga 840, Japan

(Received 16 December 1992; accepted 12 May 1993)

Abstract

The crystal structure of a binuclear copper(II) complex, μ -formato- $1\kappa O: 2\kappa O' - \mu - 2, 2' - [1,3-(2-hy-droxypropanediyl-1:<math>2\kappa^2 O$)bis(nitrilomethylidyne)]di-

phenolato(3-)-1 $\kappa^2 N$, $O:2\kappa^2 N'$, O'-dicopper(II), [Cu₂-(L-sal)(HCOO)], H₃(L-sal) = N, N'-bis(salicylidene)-1,3-diamino-2-propanol, was determined by X-ray diffraction. The title compound is ferromagnetic as a result of the roof-shaped structure of the Cu₂O(OCO) core (-2J = -94 cm⁻¹). The Cu···Cu distance is 3.260 (1) Å and the Cu–O–Cu bond angle is 115.2 (2)°.

Comment

The structures and magnetism of binuclear Cu^{II} complexes with both μ -alkoxo and μ -carboxylato bridges have been studied to reveal the orbital counter-complementary effect (Nishida & Kida, 1986; Kawata et al., 1992). These Cu^{II} complexes are usually antiferromagnetic with the Cu-O-Cu angle greater than 130°. However, the antiferromagnetic interaction is depressed by the so-called roof-shaped distortion, which is measured by the dihedral angle between the two Cu coordination planes, τ (Charlot et al., 1979; Charlot, Kahn, Jeannin & Jeannin, 1980). The -2J value of the title complex is -94 cm^{-1} with $\tau = 51.4 (2)^{\circ}$. The roof-shaped distortion is determined by the conformation of the five-membered chelate rings sharing an alkoxo group. When the combination of the enantiomeric conformation of the rings is $\delta \lambda$, the binuclear complex takes a flat form with a small τ angle (δ stands for a right-handed helical relation between the C-C bond axis and the line which connects the alkoxo O and secondary amine N atoms, λ for a left-handed helix). In Fig. 1 the combination is $\lambda\lambda$. It seems that the roof-shaped distortion is the result of the crystal packing force. Planar and roof-shaped structures of $[Cu_2(L-ac)(CH_3COO)]$ (the ligand H₃L-ac is a 1:2) Schiff base derived from 1,3-diaminopropan-2-ol and acetylacetone) are observed in hydrated (Nishida & Kida, 1986) and anhydrous crystals (Fallon, Murray, Mazurek & O'Connor, 1985), respectively, and the magnetic and structural features have been compared (Mazurek et al., 1985). Crystal structure analysis of [Cu₂(L-ac)(HCOO)] was also attempted in this study, but failed owing to the poor quality of

Fig. 1. ORTEPII drawing (Johnson, 1976) with the thermal ellipsoids scaled at the 50% probability level. The H atoms are represented by circles of radius 0.08 Å.

the	crystals	[simple	cubic,	a = 22.388 (4) Å,	V =
1122	21 (5) Å ³ ,	Ž =	24,	$D_m = 1.47$ (2),	$D_x =$
1.54	$Mg m^{-3}$].			

Experimental

Crystal data

 $[Cu_2(C_{17}H_{15}N_2O_3)(CHO_2)]$ Mo $K\alpha$ radiation $M_r = 467.4$ $\lambda = 0.71073 \text{ Å}$ Cell parameters from 34 Monoclinic reflections $P2_1/c$ $\theta = 10 - 15^{\circ}$ a = 12.756 (2) Å $\mu = 2.483 \text{ mm}^{-1}$ b = 14.451 (2) Å T = 297 (2) K c = 9.805 (1) ÅPrism $\beta = 105.69 (1)^{\circ}$ $0.40 \times 0.40 \times 0.25$ mm V = 1740.1 (4) Å³ Dark green Z = 4 $D_{\rm r} = 1.784 {\rm Mg m}^{-3}$ $D_m = 1.78$ (2) Mg m⁻³

Data collection

Rigaku AFC-5 four-circle diffractometer2497 obse $[F > 3a]$ ω scans $[F > 3a]$ Δ scans $R_{int} = 0.01$ Δ bsorption correction: by integration from crystal shape $h = 0 \rightarrow$ $T_{min} = 0.369, T_{max} =$ 0.573 $l = -12 \rightarrow$ 4163 measured reflections 3991 independent reflections5 standard reflections	rved reflections $\sigma(F)$] 8 5° 16 $\rightarrow 0$ $\rightarrow 12$ 1 reflections
---	---

Refinement

$w = 1/\sigma^2$
$(\Delta/\sigma)_{\rm max} = 0.133$
$\Delta \rho_{\rm max}$ = 1.06 e Å ⁻³
$\Delta \rho_{\rm min} = -1.17 \ {\rm e} \ {\rm \AA}^{-3}$
Atomic scattering factors
from International Tables
for X-ray Crystallography
(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$

$U_{\text{eq}} = \frac{1}{2} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{i}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$

	х	у	z	U_{eq}
Cu(1)	0.73340 (7)	0.59995 (6)	0.10086 (8)	0.0322 (3)
Cu(2)	0.88058 (7)	0.52676 (6)	0.40742 (8)	0.0295 (3)
O(1)	0.8631 (3)	0.5523 (3)	0.0575 (4)	0.042 (2)
O(2)	0.9178 (3)	0.4638 (3)	0.2491 (4)	0.035 (2)
O(3)	0.8077 (3)	0.6305 (3)	0.2910 (4)	0.031 (2)
O(4)	0.6597 (3)	0.5892 (3)	-0.0928 (4)	0.041 (2)
O(5)	0.9364 (3)	0.4211 (3)	0.5233 (4)	0.032 (2)
N(1)	0.6030 (4)	0.6354 (4)	0.1531 (6)	0.038 (2)
N(2)	0.8207 (4)	0.5801 (4)	0.5509 (5)	0.033 (2)
C(1)	0.9197 (5)	0.4924 (5)	0.1306 (7)	0.037 (3)
C(2)	0.5560 (5)	0.6006 (5)	-0.1522 (7)	0.037 (3)
C(3)	0.5167 (6)	0.5909 (6)	-0.3008 (8)	0.049 (3)
C(4)	0.4084 (6)	0.6019 (6)	-0.3709 (8)	0.057 (3)
C(5)	0.3321 (6)	0.6232 (6)	-0.2977 (9)	0.061 (4)
C(6)	0.3689 (6)	0.6328 (6)	-0.1533 (8)	0.055 (3)

C(7)	0.4774 (5)	0.	6241 ((5) ·	0.0785 (8)	0.042 (3)
C(8)	0.5077 (5)	0.	6382 ((5)	0.0736 (7)	0.041 (3)
C(9)	0.6276 (6)	0.	6510	(5)	0.3082 (7)	0.041 (3)
C(10)	0.7427 (6)	0.	6842	(5)	0.3580 (7)	0.035 (3)
C(11)	0.7880 (6)	0.	6768	(5)	0.5185 (7)	0.042 (3)
C(12)	0.8044 (5)	0.	5384	(5)	0.6586 (6)	0.034 (3)
C(13)	0.8328 (5)	0.	4438	(5)	0.6938 (6)	0.029 (2)
C(14)	0.7992 (5)	0.	4055	(5)	0.8090 (7)	0.038 (3)
C(15)	0.8303 (6)	0.	3192	(5)	0.8584 (7)	0.047 (3)
C(16)	0.8989 (6)	0.	2676	(5)	0.7983 (7)	0.041 (3)
C(17)	0.9329 (6)	0.	3025	(5)	0.6860 (7)	0.036 (3)
C(18)	0.9013 (5)	0.	3905	(4)	0.6307 (6)	0.029 (2)
	Table 2.	Geom	etric	naran	ueters (Å. °)	
		2 2 2 2 1 1 1			(10)	1 280 (0)
Cu(1) - Cu(2)		3.260 (1)	N(2) = 0	C(12)	1.280 (9)
Cu(1) = O(1)		1.942 (5)	C(2) = C(2)	2(3)	1.414 (9)
Cu(1) - O(3)		1.901 (4)	C(2)C	J(/)	1.43(1)
Cu(1) = O(4)		1.884 (4)	C(3) = 0	C(4)	1.37(1)
Cu(1) - N(1)		1.937 (6)	C(4) = 0	2(5)	1.39(1)
Cu(2) - O(2)		1.965 (5)	C(5) = 0	C(6)	1.37(1)
Cu(2) = O(3)		1.959 (4)	C(6)(C(7)	1.385 (9)
Cu(2) = O(5)		1.921 (4)	C(1) -		1.45 (1)
Cu(2) - N(2)		1.934 (6)	C(9) = 0	$\mathcal{L}(10)$	1.49(1)
O(1) - C(1)		1.227 (8)	C(10) - C(10)	-C(II)	1.527 (9)
O(2) - C(1)		1.240 (8)	C(12) - C(12	-C(13)	1.432 (9)
O(3) - C(10)		1.420 (9	9	C(13)-	-C(14)	1.42(1)
O(4) - C(2)		1.304 (7)	C(13)-	-C(18)	1.43(1)
O(5) - C(18)		1.326 (8	5) 	C(14)-	-C(15)	1.36(1)
N(1) - C(8)		1.255 (8	5)	C(15) - C(15	-C(16)	1.40(1)
N(1) - C(9)		1.485 (9	2	C(16)-	-C(17)	1.38(1)
N(2) - C(11)		1.468 (9	"	C(17)-	-C(18)	1.398 (9)
O(1)-Cu(1)-	-O(3)	93.9 (2	2)	O(3)—	Cu(2)—N(2)	84.3 (2)

The compound was prepared by reacting Cull formate and H₃(Lsal) (Nishida & Kida, 1986). The magnetic susceptibilities over the temperature range 80-300 K were determined by the Faraday method. The X-ray structure analysis was carried out on a MIPS 3230 workstation with the Xtal3.0 program system (Hall & Stewart, 1990).

O(5)-Cu(2)-N(2)

Cu(1)-O(1)-C(1)

Cu(2) - O(2) - C(1)

Cu(1)-O(3)-Cu(2) Cu(1)-O(3)-C(10)

Cu(2) - O(3) - C(10)

Cu(2) - O(5) - C(18)O(1) - C(1) - O(2)

92.4 (2)

121.6 (5)

131.0 (5)

115.2 (2)

112.4 (3)

113.2 (4)

125.7 (4)

128.7(7)

88.4 (2)

174.2 (2)

171.3 (2)

85.1 (2)

93.3 (2)

94.1 (2)

88.3 (2)

170.7 (2)

173.6 (2)

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71323 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1028]

References

O(1) - Cu(1) - O(4)

O(1) - Cu(1) - N(1)

O(3)-Cu(1)-O(4)

O(3)-Cu(1)-N(1)

O(4) - Cu(1) - N(1)

O(2) - Cu(2) - O(3)

O(2)-Cu(2)-O(5)

O(2)-Cu(2)-N(2)

O(3) - Cu(2) - O(5)

- Charlot, M. F., Jeannin, S., Jeannin, Y., Kahn, O., Lucrece-Abaul, J. & Martin-Frere, J. (1979). Inorg. Chem. 18, 1675-1681.
- Charlot, M. F., Kahn, O., Jeannin, S. & Jeannin, Y. (1980). Inorg. Chem. 19, 1410-1411.
- Fallon, G. D., Murray, K. S., Mazurek, W. & O'Connor, M. J. (1985). Inorg. Chim. Acta, 96, L53-L55.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

- Kawata, T., Yamanaka, M., Ohba, S., Nishida, Y., Nagamatsu, M., Tokii, T., Kato, M. & Steward, O. W. (1992). Bull. Chem. Soc. Jpn, 65, 2739–2747.
- Mazurek, W., Kennedy, B. J., Murray, K. S., O'Connor, M. J., Rodgers, J. R., Snow, M. R., Wedd, A. G. & Zwack, P. R. (1985). *Inorg. Chem.* 24, 3258–3264.
- Nishida, Y. & Kida, S. (1986). J. Chem. Soc. Dalton Trans. pp. 2633-2640.

Acta Cryst. (1993). C49, 2072-2074

Structure of the Monohydrido Bridged Dinuclear Platinum(II) Dihydride [(PEt₃)₂PhPt(μ-H)PtH(PEt₃)₂][BPh₄]

F. BACHECHI, P. MURA AND L. ZAMBONELLI

Instituto di Strutturistica Chimica 'G. Giacomello', CNR, CP 10, 00016 Monterotondo St, Roma, Italy

(Received 18 January 1993; accepted 21 May 1993)

Abstract

The structure of the cationic complex μ -hydrido-1:2 κ^2 H-hydrido-2 κ H-phenyl-1 κ C-tetrakis(triethylphosphine)-1 κ^2 P,2 κ^2 P-diplatinum(II) consists of two platinum-containing units, which lie on reciprocally perpendicular planes. In each unit, the Pt atom is coordinated in a distorted square-planar arrangement. One hydride ligand is in a bridging position, while the other hydride is terminal on Pt(2). The Pt…Pt distance is 3.093 (1) Å.

Comment

In a preliminary communication, the preparation, characterization and the partially refined X-ray structure of the title compound were reported (Bracher, Grove, Venanzi, Bachechi, Mura & Zambonelli, 1978). The dihydrido-bridged isomer $[(PEt_3)_2PhPt(\mu-H)_2Pt(PEt_3)_2]^+$ has been studied also and its structure reported (Bachechi, Bracher, Grove, Kellenberger, Pregosin, Venanzi & Zambonelli, 1983).

The crystal structure contains discrete tetraphenylborate anions and dinuclear dihydridoplatinum(II) cations with no short contacts between atoms of different ions. The complex cation is shown in Fig. 1.

The structure of the cationic complex (I) consists of two Pt-containing units, which lie on almost perpendicular planes forming a dihedral angle of 82°. The hydride ligands were not located by X-ray analysis, but the coordination geometry of the Pt atoms is consistent with the NMR data (Bracher *et*

Fig. 1. Perspective view of the cationic complex with ellipsoids at the 30% probability level. In the core, the hydride ligands are placed at calculated sites.

al., 1978), which indicates the presence of one bridging and one terminal hydride ligand. In each unit, the Pt atom is coordinated in a distorted squareplanar arrangement with apparent vacant sites. When these sites are considered occupied by the hydrides, one of them, *trans* to C(25), is bridging, while the other, bound to Pt(2), is terminal. The C(25)—Pt(1)…Pt(2) angle of 164.3 (4)° indicates that the bridging hydride is not collinear with the two metal centres.

$$\varphi(1) \wedge \varphi(2) = 82^{\circ} \varphi(1) \wedge \varphi(3) = 84^{\circ} \varphi(2) \wedge \varphi(3) = 14$$

The probable positions of the hydride ligands were calculated using the program HYDEX (Orpen, 1980) at the potential energy minima and are represented in Fig. 1.

The Pt…Pt distance of 3.093 (1) Å is among the longest observed in Pt complexes with one hydrido bridge, together with those found in the trihydride [(PEt₃)₂HPt(μ -H)PtH(PEt₃)₂]⁺ [3.028 (1) Å (Bachechi, 1993)] and the monohydride [(PEt₃)₂PhPt(μ -H)PtPh(PEt₃)₂]⁺ [3.238 (1) Å (Carmona, Thouvenot, Venanzi, Bachechi & Zam-